
As the results of the numerical experiments showed, for the input I/p the maximum deviation 
of the output signals of the digital model and the thermal link is observed initially (Table 
i). For t > 7 sec (k = 6.7) the error does not exceed 0.1%. Increasing k decreases the out- 
put signals initially and therefore extends the initial section up to i00 sec. For t > i00 
sec the error does not exceed 0.17%. For the input I(p~P) the error of the digital model is 
initially somewhat higher (.Table 2). But for t > 15 sec (k = 6.7) it does not exceed 0.2%, 
For k = 67, t = 200 sec the error does not exceed 0.22%. Graphs of the output signals of 
the thermal link and digital model for inputs I/(p~P) and i/p are represented in Fig. 3. For 
k = 6.7 the output signals of the digital model and thermal link are identical in the ob- 
servation interval [i0, i00 sec]. 

NOTATION 

p, Laplace transform parameter; 80 , quantization step for the excess temperature @iO(09 
excess temperature, 6out, is the digital signal at the input of the model, n = 0, 17 2 ~o., 

2 ~ x 
erfcx=l--erfx, erfx=~ exp(-- x~)dx is Gauss'error function. 

0 
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RECONSTRUCTION OF CAUSAL CHARACTERISTICS OF THE THERMAL CONDUCTIVITY 

PROCESS FROM THE SOLUTION OF THE COMBINED INVERSE PROBLEM 

O. M. Alifanov, S. L. Balakovskii, 
and M. V. Klibanov 

UDC 536.24 

An algorithm is suggested for solving the combined inverse problem of heat exchange 
on the basis of using uniqueness theorems. 

Methods of inverse problems of heat exchange (IPHE), substantially enhancing the 
effectiveness of studies in this region, have become widely used in analyzing heat-exchange 
processes. Among the various IPHE formulations, one can distinguish the combined methods 
[i], when one seeks simultaneously causal characteristics of various types. Thus, in simu- 
lating thermal processes is heat-protection materials, during plasma deposition, heating, and 
a numher of other cases the necessity arises of determining the thermal conductivity coefficient 
in the high temperature region. At the same time the low measurement accuracy does not make 
it possible to obtain reliable information concerning external thermal loads and internal 
heat sources, rela~ed, for example, to chemical reaction flow in the hulk of the material 
investigated. This difficulty is overcome as a result of solving the combined IPHE, consist- 
ing of determining the coefficients of the thermal conductivity equation and the heat flux 
density at the boundary from temperature measurements at internal points of the hody. We 
note tha~ in several cases the temperatures at internal points are the only reliable source 
of information on the thermal state of the object. 
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Considering the mathematical aspects of the problem, it may be noted that uniqueness 
theorems play a major role in similar problems. The use of these theorems in solving IPHE 
substantially enhances the reliability of the reconstructed characteristics, and sharply out- 
lines the boundaries of their uniqueness. As shown in the present study, the uniqueness 
theorem provides the possibility of not assuming known boundary conditions at the boundary 
of the body. Uniqueness theorems of the coefficients of inverse problems with data at internal 
points were earlier obtained under the assumption that one of the coefficients is unknown 
[2, 3]. In the case of two unknown coefficients it is suggested in [4] that inside the body 
there exists a standard sample with known properties. 

In the present study we discuss an IPHE uniqueness theorem for the determination of the 
thermal conductivity coefficient, the bulk heat release, and the thermal flux density at one 
of the boundaries from temperature measurements at three internal points of the body. 
theorem is proved by a modified method of studies [5-8]. 

Consider the following IPHE: 

or o or I or 
c (V) 0----~ = O---Z - - ~ x ,  -t- K (r) -~x  + Q (T), 

TIx=x~ 

, i f l ,  

The 

(i) 

0<x<b, 0<T< Tm, 

TIT= o = To, 

OT I = O, 
Ox ]x=o 

= [i(~), i =  1, 2, 3, O < x l < x . , . < x 3 < x ~ = b ,  

T), g(r) ,  h (~) 
function {T, X (T), Q (T), q (T)} , where 

2, 3, are known functions. 

(2) 

(3) 

(4) 
It is required to determine the vector- 

OT 
q (x) = - -  (X (T) --~-x )~= ~ (5) 

We assume t h a t  c(T), K(T), Q(T) 6C(--co, oo), k(T) 6C 1(-co, oo),, c (T)~y~>0 ,  X(T)~y~>0  
We d e n o t e  G = (0, b)(0, %~), G - :  [0, b] [0, TM, where  C 4'2 i s  a s e t  o f  f u n c t i o n s ,  hav ing  c o n t i n u o u s ,  
bounded derivatives O/OXmOT '~ in G, with m + 2n ~ 4. We further take 

TCC"'~'(~), v(x, .~)~a 0---!-V <0 ,  O-Z--V >0 .  
Ox ax (6) 

Inequality (6) implies a decrease in x and an increase in T of the function T(x, T). 
Usually (6) is obvious from physical considerations. Mathematically this can be verified by 
means of the maximum principle if we impose additional conditions on IPHE data [9]. 

It can be assumed that at low temperatures the coefficients of Eq. (i) are constant in a 
narrow interval. The following lemma is then valid. 

L E M M A. For small number e~ 0 let the functions c(T), ~(T), K(T), Q(T) be con starLt 
for T 0< T < T oq2~ The constants )~o=~,(T), Qo=Q(T) are then uniquely determirmd at 
(x, ~)~(0, b)X#0, 6) for some small number 6=6(e). The number 6(~) can be estimated from 
above in terms of e. 

The lemma is proved on the basis of explicit equations of the solution of the problem (i)- 
(3), (5) in the case of constant coefficients. 

Thus, in view of the lemma it can be assumed that the functions ~(x)=T(x, 6), X($(x)),Q(~(x)) 
are known. We denote ~i=~(0), ~2=[i(%0 Let ~2 > ~i. For each Zfi[~l,,~2] we denote by 
Sz(x) the function being a solution of the equation T(x, Sz(x)) = z. The function T = Sz(x) 
is naturally assumed to be isothermal. We denote Dz={(x, ~)EGIT(x, g)<z} 

T }1 E 0 R E M. Let the lemma conditions be satisfied, and Vz~[il, =2] 

aT (x~, Sz (~c2)) =/= OT (x~, S~ (xO) 
Ox Ox 

Then no more than one vector-function can be found 

{T, )~(z), Q(z), q('c)} ~C4'2 (Dora) x C*(To, ~z2) C(To, ~ )  • 6"2( 0, S~,(0)), 

(7) 
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D~ z 

0 X I x 2 x 3 b 

Fig. i. The uniqueness region 
of the IPHE solution, defined by 
the theorem. 

satisfying (I)-(4), (6). The region De2 is determined uniquely (Fig. i). 

The theorem is proved by using the modified method of studies [5-8]. A more general 
theorem is considered in [i0]. 

One comment must be made concerning this theorem. It is assumed in it that the functions 
T, I, Q, q are uniquely determined on the sets D~ , [To, ~2], [To, ~2], [0, S~ (0)] , respectively. 
Outside the region D~2 uniqueness no longer holds. 

Below we consider the nonlinear inverse problem, in which from the unperturbed inlet 
temperature at three internal points of the body one reconstructs the temperature dependences 
of the thermal conductivity coefficient and of the bulk heat release, as well as the time 
dependence of the thermal flux density at the boundary. 

The problem is formulated as follows. It is required to determine the functions T(x, ~), 
%(T), Q(T)~ q(~) from conditions (1)-(4) for each case K(T) = 0. 

Since by the uniqueness theorem the parameters I(T) and Q(T) can be determined uniquely 
only on the segment [Tmin, Tmax] , where Tmi n = To, Tmax = f1(Tm), it is natural to partition 
the original problem into two problems. 

In the first we have reconstruction of the functions I(T) and Q(T) on the segment [Tmin, 
Tma x] from the coefficienct solution of the inverse problem in the region (xl, b) X (0, T m) 
from known conditions at the boundaries (given by the temperature f1(~) at the point x = x l 
and by the vanishing thermal flux density at the point x = b) and the inlet temperature f2(x) 
and f3(~). A similar problem for given temperatures at both boundaries was investigated in 
[ii] (simultaneous reconstruction of the heat conductivity and heat capacity coefficients was 
considered), while the presence of boundary conditions of the second kind does not lead to 
major changes in the algorithm. 

The mathematical formualtion of the problem is: 

a~ - a ~  + .~ Q~p,~(o), (8)  

x~<x<b, O<T<T~, 

e1~=o = To, (9) 
elx=~, = fi  (z), ( lO) 

O@Ox x=b =0" (ii) 

The function I and Q are approximated piecewise linearly on the segment [Tmin, Tmax]: 

N 

a = O  

(12) 

N 

Q (o) : ~ Q~ (o), 
n=O 

(13) 
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where N is the number of approximation sites, and ~n(O) are pyramidal basis functions. It is 
required to determine the vectors {%n, n=0, N}, {Qn, n=0, N}. 

Considering the problem stated as extremal, we introduce into the treatment the functional 

T~ 
J(X, Q) = ~ .I [0 (x~, T)- - f i  (T)pdT. (14) 

i = 2 , 3 0  

The reconstruction of the unknown characteristics reduces in this case to minimizing (14) with 
restrictions on the discrepancy level. 

An effective means of searching for the minimum point Of the functional is the gradient 
descent by the iteration procedure: 

(k) 
(k) (k--~) 0 J X , , :  X . - - ~ . , , ~ ,  n = 0 ,  N, k :  1, 2 . . . . .  (15) 

(k) 
(~) (k--t) 0 J 

. . .  Q,~= Q,~ --~Qh oq-~,~ ' n = 0 ,  N, k =  1, 2, 
(16) 

To calculate the gradient components of the functionals Od/OX, OJ/OQ 
treatment the problem conjugate to (8)-(11): 

N d ~  (0) 
--c (0) OT Ox z dO 

n = O  r l~O 

x~<x<x~+~, i =  1, 2, 3, 0<T<T~, 

*~[~=.,~=0, i =  1, 2, 3, 

*~l~=:,, = 0, *i-llx=x~ = *4,=xi' i = 2, 3, 

we introduce into the 

(17) 

(18) 

(19) 

xN ~n(~n (O)Q Ol~iOx O*i--~OX )[x=x~ = 2(Ol~=x--h(T)),  i = 2 ,  a, 
n ~ O  

0% I : O. 
Ox x=x, 

(20) 

(21) 

The quantities OJ/O~ 
problem as follows: 

and OJ/OQ are expressed in terms of the solution of the conjugate 

= E , i  dxd , n = o, N; 
i = 1  0 x i 

T m OJ a xi+ l 
: ~ i" ~ *iq~n (O) dxdT' n = 0 ,  hr. 

In the iterative descent of (15), (16) we used the linear vector estimate of the quanti- 

ties ~xk and ~Q.~ [ii]. 

The purpose of the second problem is the determination of q(T) from the solution of the 
one-dimensional IPHE in the region (0, Xm)X (0, Tin) with known temperature and thermal flux 
density at the boundary [i], which is calculated from (8)-(13) from the reconstructed values 
of I and Q. The point here is that the quantities I(T) and Q(T) in the thermal conductivity 
equation were reconstructed only for T _ Tma x, while in the region, x < x: the temperature 
can exceed the value Tma x. The reconstructed function q(T) will then. correspond to the real 
one for ~<T0 , where T0 satisfies the condition T(0, I:0) = Tmax- 

At times T > To due to the uniqueness theorem the reconstructed value of q(~) may not 
have anything in common with the real solution. 

For numerical realization, of the algorithm the boundary value problems were approxi, 
mated by algebraic equations with an. implicit scheme [12] on. a grid n T x nx = 50 x 40. The 
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Fig. 2. Result of reconstructing the thermal conduc- 
tivity coefficient (a) and the bulk heat release (b): 
i) initial approximation; 2) reconstructed solution 
(10th interation); 3) real solution Q, W/m3; T, K; ~, 

W/(m-K). 
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0 ~' 8 "~ 

Fig. 3. Result of recovering 
the thermal flux density at 
zeroth initial approximation: 
i) reconstructed solution (15th 
interaction); 2) model thermal 
flux density q, BT/M2; T,C 

computation time of a single iteration for the IPHE on an ES-I022 computer was 5 min, and the 
iteration was stopped when the adhesion condition was approximated within 0.5%. The input 
values fi(T), i = i, 2, 3, were selected from the solution of the direct problem of thermal 
conductivity (1)-(3), (5). The following parameter values were taken: ~m= ]0sec,b= 10 -2 m, x1= 
10 -a m, x 2 = 4 . 1 0  -3 m, x 3 ~ 8 . 1 0  -a m, To=300  K, c ( T ) = ( 2 , 6 4 . 1 0 6 + 1 , 2  +103 T) J / ( m 3 - K ) .  The number  o f  N 
of approximation sites of the functions k and Q were taken equal to 5, with Tmi n = 3007K, 
Tma x = 792~ 

The solution results of the IPHE model are shown in Figs. 2 and 3. It is seen that upon 
approaching high temperature values the quality of recovering % and Q worsens. Besides, as 
is seen from Fig. 3, the reconstructed and the real thermal flux density differ substantially 
from each other at times near rm, which is a direct consequence of the uniqueness theorem. 

NOTATION 

T, @, temperature fields; T, current time; T m, observation time; x, spatial coordinate; 
c, specific heat; %, thermal conductivity coefficient; Q, bulk heat release; q, thermal flux 
density; Da2 , uniqueness region of the IPHE solution; Tmi n and Tmax, minimal and maximal inlet 
temperature values; ~%, BQ, descent steps on iterations; ~i, conjugated function; and y~, Y2, 
positive constants. 
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STUDY OF THE UNSTEADY TEMPERATURE FIELD IN A SPHERICAL BODY 

USING CHEBYSHEV--LAGUERRE POLYNOMIALS 

V. A. Galazyuk and Ya. Yu. Kolyano UDC 536.2 

We discuss a method of solving axisymmetric boundary-value problems for the 
parabolic heat equation in spherical coordinates based on the use of 
Chebyshev--Laguerre polynomials. 

The unsteady heat conduction of a spherical body subject to nonuniform axisymmetric 
heating of its surface reduces to the solution of a boundary-value problem for the parabolic 
heat equation. The Laplace transform in time leads to significant computational difficulties 
in this case. We discuss a new method of finding the unsteady temperature field in a spherical 
body subject to local heating. The method is based on the use of Chebyshev--Laguerre poly- 
nomials [i]. 

i. Consider a hollow sphere and define spherical coordinates (r, 0,T) in the usual way. 
The outer and inner surfaces of the sphere are subject to heat exchange according to Newton's 
law into media with temperatures T~c(8, F), respectively. 

The temperature field T(y, 0, F) inside the sphere is found by solving the following axi- 
symmetric mixed initial-value--boundary-value problem: 

[(1 -]- 8Y)2 - ' ~  ] (1-t- ey)2 sin O a Z  0 ( ) 1 0 0 T  " t - sinO or  OT 
(l-l--By) 2 Oy O0 = ~-~ , --1~?~1, 0 ~ 0 - - ~ ,  ( i )  

OT ~• (2) .--~-? ] ~Bi•177 0)1=0~ y=_l ,  

T(y, 0, F)=0, F~0, (3) 
where r = R(I + cy) is the radius of the sphere, ~ = h/R; F = a~;/h 2 is the Fourier number; 
Bi + = =• t are the Blot numbers on the surfaces y = +i. 

The integral formula 

oo 

T.m(y)----- ( t n ~ + ) ~ i ' e x p ( - - k F ) L . ( k F )  [Jo T(y, 0, F)Pm(cosO)sinOdOldF ' n, tn-~()", oo. (4) 

defines a double integral transform of the function T(y, 0, F), where Ln(%F) are the 
orthogonal Chebyshev--Laguerre polynomials; Pm(cos0) are the orthogonal Legendre polynomials 
[2]; X is a positive parameter which we call the regularization, parameter. 
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